a-mavrin.ru

Фазовые переходы. Критическая точка

При достаточно высоких температурах горизонтальный участок изотермы реального газа (см. рис. 6.4) становится совсем коротким и при некоторой температуре обращается в точку (на рис. 6.4 - точка К). Эту температуру называют критической.

Критической называется температура, при которой исчезают различия в физических свойствах между жидкостью и паром, находящимся с ней в динамическом равновесии. Каждое вещество имеет свою критическую температуру. Например, критическая температура для углекислоты СO 2 равна t K = 31 °С, а для воды - t K = 374 °С.

Критическое состояние

Состояние, соответствующее точке К, в которую обращается горизонтальный участок изотермы при температуре Т = Т к, называют критическим состоянием (критическая точка). Давление и объем в этом состоянии называют критическими. Критическое давление для углекислого газа равно 7,4 10 6 Па (73 атм), а для воды 2,2 10 7 Па (218 атм). В критическом состоянии жидкость имеет максимальный объем, а насыщенный пар - максимальное давление.

Плотность жидкости и ее насыщенного пара при критической температуре

Мы уже отмечали, что при увеличении температуры возрастает плотность насыщенного пара (см. § 6.3). Плотность жидкости, находящейся в равновесии со своим паром, наоборот, уменьшается вследствие ее расширения при нагревании.

В таблице 2 приведены значения плотности воды и ее насыщенного пара для разных температур.

Таблица 2

Если на одном рисунке начертить кривые зависимости плотности жидкости и ее насыщенного пара от температуры, то для жидкости кривая пойдет вниз, а для пара - вверх (рис. 6.6). При критической температуре обе кривые сливаются, т. е. плотность жидкости становится равной плотности пара. Различие между жидкостью и паром исчезает.

Рис. 6.6

Газ и пар

Мы много раз употребляли слова «газ» и «пар». Эти термины возникли в те времена, когда считалось, что пар может быть превращен в жидкость, а газ нет. После того как все газы были сконденсированы (см. § 6.7), для такой двойственной терминологии не осталось оснований. Пар и газ - это одно и то же, между ними принципиальной разницы нет. Когда говорят о паре какой-нибудь жидкости, то обычно имеют в виду, что его температура меньше критической и сжатием его можно превратить в жидкость. Только по привычке мы говорим о водяном паре, а не о водяном газе, о насыщенном паре, а не о насыщенном газе и т. д.

Экспериментальное исследование критического состояния

Эксперименты по изучению критического состояния выполнил в 1863 г. русский ученый М. П. Авенариус. Прибор, с помощью которого можно наблюдать критическое состояние (прибор Авенариуса), состоит из воздушной ванны (рис. 6.7) и находящейся внутри ванны запаянной стеклянной трубочки (ампулы) с жидким эфиром. Объем ампулы (ее вместимость) равен критическому объему эфира, налитого в трубочку. Пространство над эфиром в ампуле заполнено насыщенным паром эфира.

Рис. 6.7

При помощи газовой горелки или другого нагревателя воздушную ванну подогревают. За состоянием эфира наблюдают через стеклянное окошко в приборе.

При комнатной температуре можно отчетливо видеть границу между жидкостью и паром (рис. 6.8, а). По мере приближения к критической температуре объем жидкого эфира увеличивается, а граница раздела жидкость - пар становится слабовыраженной, неустойчивой (рис. 6.8, б).

Рис. 6.8

При подходе к критическому состоянию граница между ними исчезает совсем (рис. 6.8, в).

При охлаждении появляется плотный туман, заполняющий всю трубочку (рис. 6.8, г). Это образуются капельки жидкости. Далее они сливаются вместе, и опять возникает граница раздела между жидкостью и паром (рис. 6.8, д).

Для опыта выбран эфир, так как он имеет сравнительно низкое критическое давление (около 36 атм). Критическая температура его тоже невелика: 194 °С.

Если сжимать газ, поддерживая его температуру выше критической (см. рис. 6.4, изотерма Т 3), причем, как и раньше, начать с очень больших объемов, то уменьшение объема приведет к возрастанию давления в соответствии с уравнением состояния идеального газа. Однако если при температуре ниже критической при определенном давлении происходила конденсация пара, то теперь образования жидкости в сосуде наблюдаться не будет. При температуре выше критической газ нельзя обратить в жидкость ни при каких давлениях.

В этом и состоит основное значение понятия критической температуры.

Диаграмма равновесных состояний газа и жидкости

Еще раз вернемся к рисунку 6.4, на котором изображены изотермы реального газа. Соединим все левые концы горизонтальных участков изотерм, т. е. те точки, которые соответствуют окончанию конденсации насыщенного пара и началу сжатия жидкости. Получится плавная кривая, оканчивающаяся в критической точке К. На рисунке 6.9 это кривая ART. Слева от кривой АК, между ней и критической изотермой (участок изотермы СК), расположена область, соответствующая жидкому состоянию вещества (на рис. 6.9 эта область выделена горизонтальной штриховкой). Каждой точке этой области соответствуют параметры р, V и Т, характеризующие жидкость в состоянии теплового равновесия.

Рис. 6.9

Соединим теперь плавной кривой все правые концы горизонтальных участков изотерм. Эта кривая на рисунке 6.9 тоже заканчивается в точке К. Две линии АК и ВК ограничивают область, каждая точка которой соответствует состоянию равновесия между жидкостью и насыщенным паром (на рис. 6.9 эта область выделена вертикальной штриховкой). За исключением области жидкого состояния и области равновесия жидкости с газом вся остальная область соответствует газообразному состоянию вещества. На рисунке 6.9 она выделена косой штриховкой.

В результате получилась диаграмма равновесных состояний газа и жидкости. Каждой точке на этой диаграмме соответствует определенное состояние системы: газ, жидкость или равновесие между жидкостью и газом.

При критической температуре свойства жидкости и насыщенного пара становятся неразличимыми. Выше критической температуры жидкость не может существовать.

Если некоторое количество жидкости поместить в закрытый сосуд, то часть жидкости испарится и над жидкостью будет находиться насыщенный пар. Давление, а следовательно, и плотность этого пара зависят от температуры. Плотность пара обычно значительно меньше плотности жидкости при той же температуре. Если повысить температуру, то плотность жидкости уменьшится (§ 198), давление же и плотность насыщенного пара возрастут. В табл. 22 приведены значения плотности воды и насыщенного водяного пара для разных температур (а следовательно, и для соответствующих давлений). На рис. 497 эти же данные приведены в виде графика. Верхняя часть графика показывает изменение плотности жидкости в зависимости от ее температуры. При повышении температуры плотность жидкости уменьшается. Нижняя часть графика показывает зависимость плотности насыщенного пара от температуры. Плотность пара увеличивается. При температуре, соответствующей точке , плотности жидкости и насыщенного пара совпадают.

Рис. 497. Зависимость плотности воды и ее насыщенного пара от температуры

Таблица 22. Свойства воды и ее насыщенного пара при разных температурах

Температура,

Давление насыщенного пара,

Плотность воды,

Плотность насыщенного пара,

Удельная теплота парообразования,

Из таблицы видно, что чем выше температура, тем меньше разница между плотностью жидкости и плотностью ее насыщенного пара. При некоторой температуре (у воды при ) эти плотности совпадают. Температуру, при которой плотности жидкости и ее насыщенного пара совпадают, называют критической температурой данного вещества. На рис. 497 ей соответствует точка . Давление, соответствующее точке , называют критическим давлением. Критические температуры различных веществ сильно разнятся между собой. Некоторые из них приведены в табл. 23.

Таблица 23. Критическая температура и критическое давление некоторых веществ

Вещество

Критическая температура,

Критическое давление, атм

Вещество

Критическая температура,

Критическое давление, атм

Углекилый газ

Кислород

Спирт этиловый

На что указывает существование критической температуры? Что будет при еще более высоких температурах?

Опыт показывает, что при температурах, более высоких чем критическая, вещество может находиться только в газообразном состоянии. Если мы будем уменьшать объем, занятый паром, при температуре выше критической, то давление пара возрастает, но он не становится насыщенным и продолжает оставаться однородным: как бы велико ни было давление, мы не обнаружим двух состояний, разделенных резкой границей, как это всегда наблюдается при более низких температурах вследствие конденсации пара. Итак, если температура какого-нибудь вещества выше критической, то равновесие вещества в виде жидкости и соприкасающегося с ней пара невозможно ни при каком давлении.

Критическое состояние вещества можно наблюдать при помощи прибора, изображенного на рис. 498. Он состоит из железной коробки с окнами, которую можно нагревать выше («воздушная баня»), и находящейся внутри бани стеклянной ампулы с эфиром. При нагревании бани мениск в ампуле поднимается, делается более плоским и, наконец, исчезает, что и свидетельствует о переходе через критическое состояние. При охлаждении бани ампула внезапно мутнеет вследствие образования множества мельчайших капелек эфира, после чего эфир собирается в нижней части ампулы.

Рис. 498. Прибор для наблюдения критического состояния эфира

Как видно из табл. 22, по мере приближения к критической точке удельная теплота парообразования становится все меньше и меньше. Это объясняется тем, что при повышении температуры уменьшается различие внутренних энергий вещества в жидком и парообразном состояниях. В самом деле, силы сцепления молекул зависят от расстояний между молекулами. Если плотности жидкости и пара отличаются мало, то мало отличаются и средние расстояния между молекулами. Следовательно, при этом будут мало отличаться и значения потенциальной энергии взаимодействия молекул. Второе слагаемое теплоты парообразования - работа против внешнего давления - тоже уменьшается по мере приближения к критической температуре. Это следует из того, что чем меньше различие в плотностях пара и жидкости, тем меньше расширение, происходящее при испарении, и, значит, тем меньше совершаемая при испарении работа.

На существование критической температуры впервые указал в 1860г. Дмитрий Иванович Менделеев (1834-1907), русский химик, открывший основной закон современной химии - периодический закон химических элементов. Большие заслуги в изучении критической температуры имеет английский химик Томас Эндрюс, произведший обстоятельное исследование поведения углекислоты при изотермическом изменении занимаемого ею объема. Эндрюс показал, что при температурах ниже в замкнутом сосуде возможно сосуществование углекислоты в жидком и в газообразном состояниях; при температурах выше такое сосуществование невозможно и весь сосуд наполнен только газом, как бы ни уменьшать его объем.

После открытия критической температуры стало понятно, почему долго не удавалось превратить в жидкость такие газы, как кислород или водород. Их критическая температура очень низка (табл. 23). Чтобы превратить эти газы в жидкость, их нужно охладить ниже критической температуры. Без этого все попытки их сжижения обречены на неудачу.

Экспериментальные и теоретические изотермы

Впервые экспериментальные изотермы для реальных газов (углекислый газ ) были изучены Эндрюсом, они были получены медленным изотермическим сжатием ненасыщенного пара, находящегося в цилиндре под поршнем (изотермы приведены на рис. 2.19,а).

Как видно из изотерм, приведенных на рис. 2.19,а, все они содержат горизонтальный участок, который с повышением температуры уменьшается и при достижении критической температуры () полностью исчезает. Критической температуре соответствует критическая изотерма 4, на ней в критической точке имеется точка перегиба.

Если провести через крайние точки горизонтальных участков изотерм линию (она будет колоколообразной), то тогда вся область диаграммы в координатах (,) будет разделена на три области (рис. 2.19,б) - область жидких состояний, область газообразных состояний и область двухфазных состояний (в ней одновременно существуют газообразное и жидкое состояния вещества). Отметим, что на рис. 2.19,б не отражено твердое состояние вещества.

Область газообразных состояний, которая располагается выше критической изотермы, называют газом. Изотермы в этой области напоминают изотермы идеального газа (рис. 2.19,а, изотерма 5). В этой области температур вещество существует только в газообразном состоянии при любых давлениях и объемах, т.е. проводя изотермическое сжатие газа, нельзя его при таких температурах превратить в жидкость. Это объясняет тот факт, что гелий и водород длительное время с помощью процесса изотермического сжатия не удавалось перевести в жидкое состояние (для гелия и водорода критические температуры составляли и соответственно). Если взять газ, находящийся ниже критической изотермы, то при изотермическом сжатии его можно превратить в жидкость. Поэтому, отмечая этот факт, в этой области газ называют ненасыщенным паром.

Рассмотрим подробнее изотерму под номером 2 на рис. 2.19,а. Ее можно разделить на три участка.

Участок - . При сжатии ненасыщенного пара он переходит в насыщенное состояние в точке .

Участок - . Происходит конденсация насыщенного пара, при неизменном давлении, равном давлению насыщенного пара при данной температуре. В этой области объемов две фазы вещества – жидкая и парообразная – находятся в равновесии. При достижении точки весь пар превращается в жидкость.

Участок - . Здесь наблюдается жидкое состояние вещества. Изменение объема жидкости при увеличении ее давления будет незначительным. Поэтому изотермы в этой области практически вертикальны.

Рассмотрим подробнее, что происходит в критической точке (параметры, соответствующие ей, обозначаются как , и ).



В критической точке наблюдается критическое состояние вещества , для него исчезает различие между жидкостью и насыщенным паром. Это проявляется в том, что при нагреве в закрытом сосуде какой-то жидкости при достижении критической температуры исчезнет граница раздела между жидкостью и паром - они образуют единое однородное вещество (плотности пара и жидкости совпадут, силы поверхностного натяжения исчезнут, теплота парообразования будет равна нулю).

3. Сравнение теоретических и экспериментальных изотерм . Рассмотрим вид расчетных изотерм, которые можно получить из уравнения (2.86). Для этого перепишем это уравнение в следующем виде:

. (2.88)

Известно, что такое кубическое уравнение имеет либо один, либо три вещественных корня. На рис. 2.19,в приведен график одной из расчетных изотерм - для нее в области давлений () решение уравнения (2.88) дает три вещественных корня (горизонтальная линия пересекает изотерму в трех точках, соответствующих значениям объема , и ). Это приводит к зигзагообразному (волнообразному) поведению изотермы в области одновременного существования насыщенного пара и жидкости.

Такое поведение изотермы в этой области не согласуется с экспериментом. В других же областях, где существует только жидкость или только пар, наблюдается достаточно удовлетворительное согласие между экспериментом и теорией.

Отметим, что волнообразные участки расчетных изотерм частично подтверждаются экспериментом. Если создать условия, при которых в газе будут отсутствовать центры конденсации (например, пылинки или ионы), то медленным изотермическим сжатием (переход 1-2-3) можно получить так называемый пересыщенный пар , ему соответствуют на изотерме состояния, заключенные между точками 2 и 3 (рис. 2.20,а). Давление пересыщенного пара превышает давление насыщенного пара при этой температуре. Эти состояния будут метастабильными (малоустойчивыми) – при возникновении центров конденсации пересыщенный пар быстро превращается в жидкость (переход 3-4), возникает равновесное состояние между насыщенным паром и жидкостью.

Аналогично можно получить метастабильные состояния перегретой жидкости . Для этого необходимо удалить из жидкости и стенок сосуда, в которой она находится, центры парообразования (например, пылинки, пузырьки растворенных в жидкости газов). Перегретой жидкости соответствуют состояния, расположенные на изотерме между точками 6 и 7, (рис. 2.20,а), ее температура будет выше температуры точки кипения. Если в жидкости возникают центры парообразования, то она мгновенно закипает (переход 7-8).

Состояния, соответствующие части изотермы между точками 3 и 7 (они обозначены пунктирной линией), абсолютно неустойчивы (рис. 2.20,а) и не реализуются на практике.

Для примера, на рис. 2.20,б приведены графики расчетных изотерм при различных температурах. При их построении необходимо учитывать, что площади фигур и должны быть одинаковы (рис. 2.20,в), это является следствием второго начала термодинамики.

4. Критические параметры вещества . Рассмотрим, как с помощью экспериментально определенных критических параметров вещества (), соответствующих критической точке, можно оценить постоянные и , входящие в уравнение Ван-дер-Ваальса.

Критической точке на критической изотерме соответствует точка перегиба, причем в этой точке касательная к графику будет горизонтальна. Это означает, что в этой точке равны нулю первая и вторая производные давления газа по объему. Найдем эти производные. Для этого перепишем уравнение (12.99) в следующем виде:

, .

Жидкость, например вода, может находиться в твердом, жидком и газообразном состоянии, которые называют фазовыми состояниями вещества . В жидкостях расстояния между молекулами примерно на два порядка меньше, чем в газах. В твердом веществе молекулы расположены еще ближе друг к другу. Температура, при которой меняется фазовое состояние вещества (жидкое – твердое, жидкое – газообразное), называется температурой фазового перехода .

Теплотой фазового перехода или скрытой теплотой называется величина теплоты плавления или испарения вещества. На рис.6.9 представлена зависимость температуры воды от количества получаемого тепла в калориях. Видно, что при температурах 0 0 С и 100 0 С происходит изменение фазового состояния воды, а температура воды при этом не изменяется. Поглощенное тепло расходуется на изменение фазового состояния вещества. Физически это означает, что при нагревании твердого тела, например, льда при 0 0 С происходит увеличение амплитуды колебаний молекул друг относительно друга. Это приводит к возрастанию их потенциальной энергии, и, следовательно, к ослаблению или разрыву межмолекулярных связей. Молекулы или их скопления получают возможность перемещаться друг относительно друга. Лед превращается при неменяющейся температуре в жидкость. После изменения его агрегатного состояния из твердого в жидкое, поглощение теплоты приводит к возрастанию температуры по линейному закону. Так происходит до 100 0 С. Затем энергия колеблющихся молекул возрастает настолько, что молекулы способны преодолеть притяжение остальных молекул. Они бурно отрываются не только от поверхности воды, но и образуют пузыри из пара по всему объему жидкости. Они поднимаются к поверхности под действием выталкивающей силы и выбрасываются наружу. В этом фазовом переходе вода превращается в пар. Далее опять поглощение теплоты приводит к возрастанию температуры пара по линейному закону.

Теплота, выделяющаяся или поглощающаяся при фазовом переходе, зависит от массы вещества.

При переходе вещества массы m из жидкого в газообразное состояние или, наоборот, из газообразного в жидкое поглощается или выделяется теплота Q:

Удельной теплотой парообразованияr Q , необходимое для превращения в пар 1 кг жидкости при температуре кипения:

При переходе вещества из твердого состояния в жидкое и обратно поглощается или передается количество теплоты:

Удельной теплотой плавления q называется количество теплоты Q , необходимое для превращения 1 кг твердого вещества (например, льда) в жидкость при температуре плавления:

Удельная теплота плавления и парообразования измеряется в Дж/кг. С ростом температуры удельная теплота парообразования уменьшается, а при критической температуре становится равной нулю.



Для воды удельная теплота плавления и парообразования соответственно составляют:

, .

Здесь используется внесистемная единица измерения количества энергии – калория, равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 °C при нормальном атмосферном давлении 101.325 кПа.

Как видно на рис.6.17 для нагревания льда от -20 0 С до 0 0 С необходимо в восемь раз меньше энергии, чем для превращения ее из льда в воду, и в 54 раза меньше, чем превратить воду в пар.

Рис.6.17. Зависимость температуры от подводимой к системе теплоты

для 1 кг льда.

Температура, при которой теряется различие между паром и жидкостью, называется критической . На рис. 6.18 иллюстрируется понятие критической температуры на зависимости плотности воды и пара от температуры. При нагревании воды в закрытой пробирке, как видно на рис.6.18, плотность воды с ростом температуры уменьшается из-за объемного расширения воды, а плотность пара возрастает. При некоторой температуре, которая и называется критической, плотность пара становится равной плотности воды.

У каждого вещества своя критическая температура. Для воды, азота и гелия критические температуры соответственно составляют:

, , .

Рис.6.18. Критическая точка на графике зависимости

плотности пара и воды от температуры.

Рис.6.19. Зависимость давления от объема p=p(V) для пара. В области, выделенной пунктиром, газообразное и жидкое состояния вещества существуют одновременно.

На рис.6.19 представлена зависимость давления пара от его объема Р=Р(V). Уравнение состояния пара при низком давлении и вдали от температуры его фазового перехода (выше точки b 0 на рис.6.19) близко к уравнению состояния идеального газа (то есть в этом случае газ можно считать идеальным и его поведение хорошо описывается законом Бойля - Мориотта). С уменьшением температуры зависимость Р=Р(V) начинает отличаться от ее вида для идеального газа. На участке а – b происходит конденсация пара и давление пара почти не меняется, а зависимость на рис.6.19 представляет собой медленно спадающую линейную функцию. Ниже точки а, весь пар становится жидкостью, и далее происходит уже сжатие жидкости.В этом случае, как видно на рис.6.11, давление при очень незначительном уменьшении объема, поскольку жидкость практически несжимаема, резко возрастает.

Поскольку температура фазового перехода зависит от давления газа, можно представить фазовые переходы, используя зависимость давления от температуры Р=Р(Т) на рис.6.20. Изменение фазового состояния вещества происходит на границе пар - жидкость, твердое тело - жидкость, твердое тело - пар. С разных сторон этих граничных линий газ находится в разном агрегатном состоянии – твердом, жидком или газообразном.

Рис.6.20. Фазовая диаграмма для воды.

Точка пересечения трех линий на рис.6.12 называется тройной точкой . Например, вода при температуре 0 0 С и давлении атм., имеет тройную точку, а углекислый газ имеет тройную точку при температуре и давлении P=5,1 атм. На рис.6.20 видно, что возможен переход вещества из газообразного в твердое состояние и наоборот, минуя жидкую стадию.

Переход из твердого состояния вещества в газообразное состояние называют сублимацией.

Пример: охлаждение сухим льдом, например, пачек мороженного, находящихся на лотках. В этом случае, как мы неоднократно видели, сухой лед превращается в пар.

Впервые сверхкритическое состояние вещества обнаружил Каньяр де ла Тур в 1822, нагревая различные жидкости в наглухо закрытом металлическом шаре (шаровая форма была выбрана, чтобы сосуд мог выдержать максимально возможное давление). Внутрь шара, помимо жидкости, он помещал простейший датчик – небольшой камешек. Потряхивая шар в процессе нагревания, Каньяр де ла Тур установил, что звук, издаваемый камешком при столкновении со стенкой шара, в определенный момент резко меняется – становится глухим и более слабым. Для каждой жидкости это происходило при строго определенной температуре, которую стали именовать точкой Каньяра де ла Тура. Настоящий интерес к новому явлению возник 1869 после экспериментов Т.Эндрюса. Проводя опыты в толстостенных стеклянных трубках, он исследовал свойства CO 2 , легко сжижающегося при повышении давления. В результате он установил, что при 31° С и 7,2 Мпа, мениск – граница, разделяющая жидкость и пространство, заполненное газом, исчезает и весь объем равномерно заполняется молочно-белой опалесцирующей жидкостью. При дальнейшем повышении температуры она быстро становится прозрачной и подвижной, состоящей из постоянно перетекающих струй, напоминающих потоки теплого воздуха над нагретой поверхностью. Дальнейшее повышение температуры и давления не приводило к видимым изменениям.

Точку, в которой происходит такой переход, он назвал критической, а состояние вещества, находящегося выше этой точки – сверхкритическим. Несмотря на то, что внешне оно напоминает жидкость, в применении к нему сейчас используется специальный термин – сверхкритический флюид (от английского слова fluid, то есть «способный течь»). В современной литературе принято сокращенное обозначение сверхкритических флюидов – СКФ.

Критическая точка.

При изменении температуры или давления происходят взаимные переходы: твердое тело – жидкость – газ, например, при нагревании твердое тело переходит в жидкое, при повышении температуры или при понижении давления жидкость превращается в газ. Все эти переходы, как правило, обратимы. В общем виде они представлены на рисунке:

Расположение линий, разграничивающих области газообразного, жидкого и твердого состояния, а также положение тройной точки, где сходятся эти три области, для каждого вещества свои. Сверхкритическая область начинается в критической точке (обозначена звездочкой), которая характеризуется непременно двумя параметрами – температурой и давлением (так же, как точка кипения). Понижение либо температуры, либо давления ниже критического выводит вещество из сверхкритического состояния.

Факт существования критической точки позволил понять, почему некоторые газы, например, водород, азот, кислород долгое время не удавалось получить в жидком виде с помощью повышенного давления, из-за чего их ранее называли перманентными газами (лат. permanentis – постоянный). Из приведенного выше рисунка видно, что область существования жидкой фазы расположена слева от линии критической температуры. Таким образом, для сжижения какого либо газа необходимо его вначале охладить до температуры ниже критической. У таких газов как СО 2 или Cl 2 критическая температура выше комнатной (31° С и 144° С соответственно), поэтому их можно сжижать при комнатной температуре, только повышая давление. У азота критическая температура много ниже комнатной: –239,9° С, поэтому, если сжимать азот, находящийся при нормальных условиях (исходная точка желтого цвета на приведенном ниже рисунке), то можно достичь в конечном итоге сверхкритической области, но жидкий азот при этом образоваться не может. Необходимо вначале охладить азот ниже критической температуры (зеленая точка) и затем, повышая давление, достичь области, где возможно существование жидкости – красная точка (твердое состояние азота возможно только при очень высоких давлениях, поэтому соответствующая область на рисунке не показана):

Аналогичная ситуация для водорода, кислорода (критические температуры соответственно –118,4° С, –147° С), поэтому перед сжижением их вначале охлаждают до температуры ниже критической, и лишь затем повышают давление.

Сверхкритическое состояние

возможно для большинства жидких и газообразных веществ, нужно лишь, чтобы вещество не разлагалось при критической температуре. Вещества, для которых такое состояние наиболее легко достижимо (т.е. нужны сравнительно невысокие температура и давление), показаны на диаграмме:

В сравнении с указанными веществами критическая точка для воды достигается с большим трудом: t кр = 374,2° С и р кр = 21,4 МПа.

Начиная с середины 1880-х критическая точка признается всеми как важный физический параметр вещества, такой же, как точка плавления или кипения. Плотность СКФ исключительно низка, например, вода в форме СКФ имеет плотность в три раза ниже, чем при обычных условиях. Все СКФ имеют крайне низкую вязкость.

Сверхкритические флюиды представляют собой нечто среднее между жидкостью и газом. Они могут сжиматься как газы (обычные жидкости практически несжимаемы) и, в тоже время, способны растворять твердые вещества, что газам не свойственно. Сверхкритический этанол (при температуре выше 234° С) очень легко растворяет некоторые неорганические соли (CoCl 2 , KBr, KI). Диоксид углерода, закись азота, этилен и некоторые другие газы в состоянии СКФ приобретают способность растворять многие органические вещества – камфару, стеариновую кислоту, парафин и нафталин. Свойства сверхкритического СО 2 как растворителя можно регулировать – при повышении давления его растворяющая способность резко увеличивается:

Опыты, поставленные для визуального наблюдения сверхкритического состояния, были опасны, поскольку не каждая стеклянная ампула способна выдержать давление в десятки МПа. Позже для того, чтобы установить момент, когда вещество становится флюидом, вместо визуальных наблюдений в стеклянных трубках вернулись к методике, близкой к той, что использовал Каньяр де ла Тур. С помощью специальной аппаратуры стали измерять скорость прохождения звука в изучаемой среде, в момент достижения критической точки скорость распространения звуковых волн резко падает.

Применение СКФ.

К середине 1980-х справочники содержали сведения о критических параметрах сотен неорганических и органических веществ, но необычные свойства СКФ все еще не находили применения.

Сверхкритические флюиды стали широко использовать только в 1980-х, когда общий уровень развития индустрии позволил сделать установки для получения СКФ широко доступными. С этого момента началось интенсивное развитие сверхкритических технологий. В первую очередь исследователи сосредоточили внимание на высокой растворяющей способности СКФ. На фоне традиционных методов использование сверхкритических флюидов оказалось очень эффективным. СКФ – это не только хорошие растворители, но и вещества с высоким коэффициентом диффузии, т.е. они легко проникают в глубинные слои различных твердых веществ и материалов. Наиболее широко стали применять сверхкритический СО 2 , который оказался растворителем широкого круга органических соединений. Диоксид углерода стал лидером в мире сверхкритических технологий, поскольку обладает целым комплексом преимуществ. Перевести его в сверхкритическое состояние достаточно легко (t кр – 31° С, р кр – 73,8 атм.), кроме того, он не токсичен, не горюч, не взрывоопасен и к тому же дешев и доступен. С точки зрения любого технолога он является идеальным компонентом любого процесса. Особую привлекательность ему придает то, что он является составной частью атмосферного воздуха и, следовательно, не загрязняет окружающую среду. Сверхкритический СО 2 можно считать экологически абсолютно чистым растворителем.

Фармацевтическая промышленность одна из первых обратилась к новой технологии, поскольку СКФ позволяют наиболее полно выделять биологически активные вещества из растительного сырья, сохраняя неизменным их состав. Новая технология полностью соответствует современным санитарно-гигиеническим нормам производства лекарственных препаратов. Кроме того, исключается стадия отгонки экстрагирующего растворителя и последующей его очистки для повторных циклов. В настоящее время организовано производство некоторых витаминов, стероидов и других препаратов по такой технологии.

Кофеин – препарат, используемый для улучшения деятельности сердечно-сосудистой системы, получают из кофейных зерен даже без предварительного их измельчения. Полнота извлечения достигается за счет высокой проникающей способности СКФ. Зерна помещают в автоклав – емкость, выдерживающую повышенное давление, затем подают в него газообразный СО 2 , и далее создают необходимое давление (>73 атм.), в результате чего СО 2 переходит в сверхкритическое состояние. Все содержимое перемешивают, после чего флюид вместе с растворенным кофеином сливают в открытую емкость. Диоксид углерода, оказавшись в условиях атмосферного давления, превращается в газ и улетает в атмосферу, а экстрагированный кофеин остается в открытой емкости в чистом виде:

В производстве косметических и парфюмерных препаратов СКФ-технологии используютсядля извлечения эфирных масел, витаминов, фитонцидов из растительных и животных продуктов. В извлеченных веществах нет следов растворителя, а мягкий способ извлечения позволяет сохранить их биологическую активность.

В пищевой промышленности новая технология позволяет деликатно извлекать из растительного сырья различные вкусовые и ароматические компоненты, добавляемые в пищевую продукцию.

Радиохимия использует новую технологию для решения экологических задач. Многие радиоактивные элементы в сверхкритической среде легко образуют комплексы с добавленными органическими соединениями – лигандами. Образующийся комплекс, в отличие от исходного соединения радиоактивного элемента, растворим во флюиде, и потому легко отделяется от основной массы вещества. Таким способом можно извлекать остатки радиоактивных элементов из отработанных руд, а также проводить дезактивацию почвы, зараженной радиоактивными отходами.

Удаление загрязнений при использовании СК-растворителя особенно эффективно. Есть проекты установок для устранения загрязнений с одежды (сверхкритическая химчистка), а также для очистки различных электронных схем в процессе их производства.

Помимо упомянутых преимуществ новая технология в большинстве случаев оказывается дешевле, чем традиционная.

Основной недостаток сверхкритических растворителей состоит в том, что емкости, заполненные СКФ, работают в режиме периодического процесса: загрузка сырья в аппарат – выгрузка готовой продукции – загрузка свежей порции сырья. Не всегда можно повысить производительность установки, увеличивая объем аппаратов, поскольку создание больших емкостей, выдерживающих давление, близкое к 10 МПа, – трудная техническая задача.

Для некоторых процессов химической технологии удалось разработать непрерывные процессы – постоянная подача сырья и непрерывный вывод полученного продукта. Производительность повышается, т.к. что не нужно тратить время на загрузку и выгрузку. В этом случае объем аппаратов можно заметно уменьшить.

Газообразный водород хорошо растворяется в сверхкритическом CO 2 , что позволяет непрерывно гидрировать органические соединения в среде флюида. В реактор, содержащий катализатор гидрирования, непрерывно подают реагенты (органическое вещество и водород), а также флюид. Продукты выводятся через специальный клапан, при этом флюид просто испаряется и его можно вновь направить в реактор. Описанным способом удается за две минуты прогидрировать почти килограмм исходного соединения, причем реактор с такой производительностью буквально умещается на ладони. Изготовить столь небольшой реактор, выдерживающий высокие давления, намного проще, чем крупный аппарат.

Такой реактор испытан в процессах гидрирования циклогексена до циклогексана (применяумого как растворитель эфирных масел и некоторых каучуков), а также изофорона до триметилциклогексанона (используют в органическом синтезе):

В химии полимеров сверхкритический СО 2 как среда для полимеризации используется редко. Большинство мономеров в нем растворимо, но в процессе полимеризации растущая молекула теряет растворимость задолго до того, как успевает заметно вырасти. Этот недостаток удалось превратить в преимущество. Полимеры, полученные обычным путем, затем эффективно очищают от примесей, извлекая не прореагировавший мономер и инициатор полимеризации с помощью СКФ. Благодаря исключительно высоким диффузионным свойствам, флюид легко проникает в массу полимера. Процесс технологичен – не нужны громадные количества органических растворителей, которые, кстати, трудно удаляются из полимерной массы.

Кроме того, полимеры легко набухают при пропитывании флюидом, поглощая его до 30 %. Резиновое кольцо после набухания увеличивает свою толщину почти вдвое:

При медленном снижении давления прежний размер восстанавливается. Если взять не эластичный материал, а твердый и после набухания резко сбросить давление, то СО 2 быстро улетает, оставляя полимер в виде микропористого материала. Это, по существу, новая технология получения поропластов.

СК-флюид незаменим для введения в массу полимера красителей, стабилизаторов, а также различных модификаторов. Например, в полиарилат вводят комплексы меди, которые при последующем восстановлении образуют металлическую медь. В итоге из полимера и равномерно распределенного металла возникает композиция, обладающая повышенной износоустойчивостью.

Некоторые полимеры (полисилоксаны и фторированные полиуглеводороды) растворяются в СК-СО 2 при температуре, близкой к 100 0 С и давлении 300 атм. Этот факт позволяет использовать СКФ в качестве среды для полимеризации обычных мономеров. К полимеризующемуся акрилату добавляют растворимые фторированные полиуглеводороды, при этом растущая молекула и фторированная «добавка» удерживают друг друга полярными взаимодействиями. Таким образом, фторированные группы добавленного полимера играют роль «поплавков», поддерживающих всю систему в растворе. В результате растущая молекула полиакрилата не выпадает из раствора в осадок и успевает вырасти до значительных размеров:

В полимерной химии используется и ранее упомянутое свойство флюидов – изменять растворяющую способность при повышении давления (см . график растворения нафталина). Полимер помещают в среду флюида и, постепенно увеличивая давление, отбирают порции раствора. Таким образом удается достаточно тонко разделить полимер на составляющие его фракции, то есть рассортировать молекулы по величине.

Вещества, используемые как флюиды. Перспективы.

Сейчас 90% всех СКФ – технологий ориентированы на сверхкритический СО 2 . Помимо диоксида углерода начинают постепенно входить в практику другие вещества. Сверхкритический ксенон (t кр – 16,6° С, р кр – 58 атм.) представляет собой абсолютно инертный растворитель, и потому химики используют его как реакционную среду для получения нестабильных соединений (чаще всего, металлоорганических), для которых СО 2 является потенциальным реагентом. Широкого применения этого флюида не ожидается, поскольку ксенон – дорогой газ.

Для извлечения животных жиров и растительных масел из природного сырья более подходит сверхкритический пропан (t кр – 96,8, р кр – 42 атм.), поскольку он лучше, чем СО 2 , растворяет указанные соединения.

Одно из самых распространенных и экологически безвредных веществ – вода, но перевести ее в сверхкритическое состояние достаточно трудно, поскольку параметры критической точки очень велики: t кр – 374° С, р кр – 220 атм. Современные технологии позволяют создавать установки, отвечающие таким требованиям, но работать в этом диапазоне температур и давлений технически сложно. Сверхкритическая вода растворяет практически все органические соединения, которые не разлагаются при высоких температурах. Такая вода, при добавлении в нее кислорода, становится мощной окислительной средой, превращающей за несколько минут любые органические соединения в Н 2 О и СО 2 . В настоящее рассматривают возможность перерабатывать таким способом бытовые отходы, прежде всего пластиковую тару (сжигать такую тару нельзя, т.к. при этом возникают токсичные летучие вещества).

Михаил Левицкий

Загрузка...