a-mavrin.ru

Как строить графики квадратичных функций (Парабол)? Способы построения некоторых лекальных кривых Как построить гиперболу черчение.

Построение параболы является одной из известных математических операций. Довольно часто она применяется не только в научных целях, но и в чисто практических. Давайте узнаем, как совершить данную процедуру при помощи инструментария приложения Excel.

Парабола представляет собой график квадратичной функции следующего типа f(x)=ax^2+bx+c . Одним из примечательных его свойств является тот факт, что парабола имеет вид симметричной фигуры, состоящей из набора точек равноудаленных от директрисы. По большому счету построение параболы в среде Эксель мало чем отличается от построения любого другого графика в этой программе.

Создание таблицы

Прежде всего, перед тем, как приступить к построению параболы, следует построить таблицу, на основании которой она и будет создаваться. Для примера возьмем построение графика функции f(x)=2x^2+7 .


Построение графика

Как уже было сказано выше, теперь нам предстоит построить сам график.


Редактирование диаграммы

Теперь можно немного отредактировать полученный график.


Кроме того, можно совершать любые другие виды редактирования полученной параболы, включая изменение её названия и наименований осей. Данные приёмы редактирования не выходят за границы действий по работе в Эксель с диаграммами других видов.

Как видим, построение параболы в Эксель ничем принципиально не отличается от построения другого вида графика или диаграммы в этой же программе. Все действия производятся на основе заранее сформированной таблицы. Кроме того, нужно учесть, что для построения параболы более всего подходит точечный вид диаграммы.

Как построить параболу? Существует несколько способов построения графика квадратичной функции. Каждый из них имеет свои плюсы и минусы. Рассмотрим два способа.

Начнём с построения графика квадратичной функции вида y=x²+bx+c и y= -x²+bx+c.

Пример.

Построить график функции y=x²+2x-3.

Решение:

y=x²+2x-3 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

От вершины (-1;-4) строим график параболы y=x²(как от начала координат. Вместо (0;0) — вершина (-1;-4). От (-1;-4) идём вправо на 1 единицу и вверх на 1 единицу, затем влево на 1 и вверх на 1; далее: 2 — вправо, 4 — вверх, 2- влево, 4 — вверх; 3 — вправо, 9 — вверх, 3 — влево, 9 — вверх. Если этих 7 точек недостаточно, далее — 4 вправо, 16 — вверх и т. д.).

График квадратичной функции y= -x²+bx+c — парабола, ветви которой направлены вниз. Для построения графика ищем координаты вершины и от неё строим параболу y= -x².

Пример.

Построить график функции y= -x²+2x+8.

Решение:

y= -x²+2x+8 — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

От вершины строим параболу y= -x² (1 — вправо, 1- вниз; 1 — влево, 1 — вниз; 2 — вправо, 4 — вниз; 2 — влево, 4 — вниз и т. д.):

Этот способ позволяет построить параболу быстро и не вызывает затруднений, если вы умеете строить графики функций y=x² и y= -x². Недостаток: если координаты вершины — дробные числа, строить график не очень удобно. Если требуется знать точные значения точек пересечения графика с осью Ох, придется дополнительно решить уравнение x²+bx+c=0 (или —x²+bx+c=0), даже если эти точки непосредственно можно определить по рисунку.

Другой способ построения параболы — по точкам, то есть можно найти несколько точек графика и через них провести параболу (с учетом того, что прямая x=хₒ является её осью симметрии). Обычно для этого берут вершину параболы, точки пересечения графика с осями координат и 1-2 дополнительные точки.

Построить график функции y=x²+5x+4.

Решение:

y=x²+5x+4 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

то есть вершина параболы — точка (-2,5; -2,25).

Ищем . В точке пересечения с осью Ох y=0: x²+5x+4=0. Корни квадратного уравнения х1=-1, х2=-4, то есть получили две точки графике (-1; 0) и (-4; 0).

В точке пересечения графика с осью Оy х=0: y=0²+5∙0+4=4. Получили точку (0; 4).

Для уточнения графика можно найти дополнительную точку. Возьмем х=1, тогда y=1²+5∙1+4=10, то есть еще одна точка графика — (1; 10). Отмечаем эти точки на координатной плоскости. С учетом симметрии параболы относительно прямой, проходящей через её вершину, отметим еще две точки: (-5; 6) и (-6; 10) и проведем через них параболу:

Построить график функции y= -x²-3x.

Решение:

y= -x²-3x — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

Вершина (-1,5; 2,25) — первая точка параболы.

В точках пересечения графика с осью абсцисс y=0, то есть решаем уравнение -x²-3x=0. Его корни — х=0 и х=-3, то есть (0;0) и (-3; 0) — еще две точки графика. Точка (о; 0) является также точкой пересечения параболы с осью ординат.

При х=1 y=-1²-3∙1=-4, то есть (1; -4) — дополнительная точка для построения графика.

Построение параболы по точкам — более трудоёмкий, по сравнению с первым, способ. Если парабола не пересекает ось Oх, дополнительных точек потребуется больше.

Прежде чем продолжить построение графиков квадратичных функций вида y=ax²+bx+c, рассмотрим построение графиков функций с помощью геометрических преобразований. Графики функций вида y=x²+c также удобнее всего строить, используя одно из таких преобразований — параллельный перенос.

Рубрика: |

Построение эллипса

Эллипс - замкнутая плоская выпуклая кривая, сумма расстояний каждой точки которой до двух данных точек, называемых фокусами, лежащих на большой оси постоянная, и равна длине большой оси. Построение овала по двум осям (рисунок 23) выполняется следующим образом:

  • - проводят осевые линии, на которых симметрично от точки пересечения O откладывают отрезки AB и CD, равные большой и малой осям эллипса;
  • - строят две окружности радиусами равными половине осей эллипса с центром в точке пересечения осей;
  • - делят окружность на двенадцать равных частей. Деление окружности выполняют как показано в п.2.3;
  • -.через полученные точки проводят лучи-диаметры;
  • - из точек пересечения лучей с соответствующими окружностями проводят прямые линии параллельно осям эллипса до их взаимного пересечения в точках лежащих на эллипсе;
  • - полученные точки соединяют плавной кривой линией при помощи лекал. При построении лекальной кривой линии необходимо выбирать и располагать лекало так, чтобы соединялось как минимум четыре-пять точек.

Существуют и другие способы построения эллипса.

Построение параболы

Парабола - плоская кривая линия, каждая точка которой равноудалена от директрисы DD 1 - прямой, перпендикулярной к оси симметрии параболы, и от фокуса F, точки расположенной на оси симметрии. Расстояние KF между директрисой и фокусом называется параметром параболы p .

На рисунке 24 показан пример вычерчивания параболы по вершине O, оси OK и хорде CD. Построение выполняют следующим образом:

  • - проводят горизонтальную прямую линию на которой отмечают вершину O и откладывают ось OK.;
  • - через точку K проводят перпендикуляр на котором симметрично вверх и вниз откладывают длину хорды параболы;
  • - строят прямоугольник ABCD, в котором одна сторона равна оси, а другая - хорде параболы;
  • - сторону BC делят на несколько равных частей, а отрезок KC на столько же равных частей;
  • - из вершины параболы О проводят лучи через точки 1, 2, и т.д., а через точки 1 1 , 2 1 , и т. д.;
  • - проводят прямые параллельные оси и определяют точки пересечения лучей с соответствующими параллельными прямыми, например, точку пересечения луча О1 с прямой О1 1 , которая принадлежит параболе;
  • - полученные точки соединяют плавной кривой линией под лекало. Вторая ветвь параболы строится аналогично.

Существуют и другие способы построения параболы.

Загрузка...