a-mavrin.ru

Найдем для вас любые электровакуумные приборы. Принципы устройства и работы электровакуумных приборов

Содержание статьи

ЭЛЕКТРОВАКУУМНЫЕ И ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ, электронные лампы, используемые для генерации, усиления или стабилизации электрических сигналов. Электронная лампа представляет собой, по существу, герметичную ампулу, в вакууме или газовой среде которой движутся электроны. Ампулу обычно изготавливают из стекла или металла. Управление электронным потоком осуществляется посредством электродов, имеющихся внутри лампы.

Хотя в большинстве приложений на смену электронным лампам пришли полупроводниковые приборы, лампы все еще находят применение в видеотерминалах, радиолокаторах, спутниковой связи и во многих других электронных приборах.

В лампе имеется несколько проводящих элементов, называемых электродами. Эмиссию электронов в лампе осуществляет катод. Эта эмиссия вызывается либо нагревом катода, в результате которого электроны «закипают» и испаряются с его поверхности, либо воздействием света на катод. Движением эмиттированных электронов управляют электрические поля, создаваемые другими электродами внутри лампы. В большинстве случаев электроды лампы изолированы друг от друга и посредством проволочных выводов соединены с внешними схемами. Электроды, которые служат для управления движением электронов, называются сетками; электроды, на которые электроны собираются, называются анодами.

В электронной лампе относительно просто управлять величиной, продолжительностью, частотой и другими характеристиками электронного потока. Эти простота и легкость управления делают ее ценным прибором в многочисленных приложениях.

Термоэлектронная эмиссия.

Электроны самопроизвольно не выходят за пределы поверхностного слоя металла из-за действия сил притяжения, источником которых является сам металл. Потенциальную энергию электрона в любой точке металла вблизи его поверхности можно представить в виде графика (рис. 1), из которого видно, что для выхода за пределы поверхности металла электрон должен увеличить свою энергию T 0 , которой он обладает при абсолютном нуле температуры, дополнительно на величину W . При комнатной температуре очень малое число электронов обладает необходимой для выхода энергией, но с повышением температуры энергия электрона возрастает и приближается к уровню, необходимому для эмиссии. В электронных лампах необходимая тепловая энергия обеспечивается электрическим током, пропускаемым по проволочной нити накала (подогревателю), находящейся в лампе.

Диод.

После того как электроны покинули катод, их движение определяется силами электрических полей, воздействующих на них в вакууме. В простейшей электронной лампе – диоде – электроны притягиваются положительным потенциалом второго электрода – анода, где они собираются и проходят в цепь соответствующей схемы (рис. 2). Диод представляет, таким образом, прибор, пропускающий ток только в одном направлении – от анода к катоду, – и, следовательно, является выпрямителем. Простой иллюстрацией применения диода может служить схема, приведенная на рис. 3, где диод используется для зарядки конденсатора напряжением от источника переменного тока. Когда потенциал катода ниже анодного потенциала, через диод течет ток, так что, в конце концов, конденсатор заряжается до пикового напряжения источника переменного тока. Варианты схемы рис. 3 используются для детектирования сигнала звуковой частоты из радиочастотной волны и для получения мощности постоянного тока от источников переменного тока.

Триод.

Триод – это электронная лампа, в которой имеется третий (управляющий) электрод, установленный между катодом и анодом (рис. 4). Этот электрод обычно представляет собой сетку из тонких проволок, установленную очень близко к катоду, чтобы при небольшой разности потенциалов между сеткой и катодом в области между этими двумя электродами действовало сравнительно высокое электрическое поле. При этом потенциал сетки будет оказывать сильное воздействие на электроны.

Типичная схема усилителя, выполненного на триоде, приведена на рис. 5. К сетке подключена батарея отрицательного напряжения смещения, обозначенная E gg . Поскольку сетка имеет отрицательный потенциал по отношению к катоду, она не будет привлекать к себе электроны потока, движущегося от катода к аноду. На аноде поддерживается положительный потенциал относительно катода, что обеспечивается батареей E pp . Значения параметров E gg , E pp , сопротивлений резистора R g в цепи сетки и нагрузочного резистора R L выбирают так, чтобы через лампу шел некоторый ток. Потенциал анода, следовательно, получается несколько меньшим, чем потенциал E pp его источника питания, вследствие протекания тока через R L .

Если на сетку подать через конденсатор положительный сигнал, она будет воздействовать на электроны, выходящие из катода. Поскольку такая сетка представляет собой слабое физическое препятствие для электронов, они будут проходить сквозь сетку на анод. Поэтому при изменении потенциала сетки в положительную сторону ток через триод возрастает, а напряжение на аноде уменьшается. (Это уменьшение происходит из-за увеличения падения напряжения на R L , связанного с увеличением тока.) Если же входной сигнал, приходящий на сетку, меняет ее потенциал в отрицательном направлении, то происходит прямо противоположный процесс; напряжение на аноде возрастает. Во многих электронных лампах изменение сеточного напряжения по существу определяет изменение тока анода; отсюда следует, что изменения напряжения на аноде определяются выбором R L . В результате малое изменение напряжения сетки может при достаточно большом R L вызывать гораздо большее изменение напряжения на аноде.

Многоэлектродные лампы.

Логично задать вопрос: каким может быть эффект увеличения числа сеток в электронной лампе? Обычно вторая сетка, которая называется экранной и поддерживается под положительным потенциалом, находится между управляющей сеткой и анодом. Ее роль состоит в том, чтобы экранировать управляющую сетку от анода, уменьшая, таким образом, емкость между ними, которая в ряде случаев может привести к нежелательным эффектам обратной связи. Лампа с двумя сетками (четырьмя электродами) называется тетродом. В некоторых случаях между экранной сеткой и анодом добавляют еще одну сетку – антидинатронную, в результате получается пятиэлектродная лампа, или пентод. В тетроде электроны, достигающие поверхности анода, при ударе о нее выбивают вторичные электроны. Некоторые из них могут двигаться в обратном направлении и собираться экранной сеткой, обычно имеющей потенциал, близкий к потенциалу анода. Такой процесс вызывает потери в общем потоке электронов, проходящих через анод (в анодном токе). Антидинатронная сетка, находящаяся между экранной сеткой и анодом, поддерживается под отрицательным потенциалом по отношению к обоим соседним электродам, так что возвращающиеся электроны отталкиваются ею обратно к аноду. На рис. 6 показана типичная схема включения пентода.

В некоторых случаях ради экономии места и средств две отдельные структуры электронных ламп объединяют в едином герметичном корпусе.

Электронно-лучевые трубки.

В электронно-лучевой трубке (ЭЛТ) для воспроизведения изображения на люминесцентном экране используется пучок электронов, получаемых с нагретого катода. Этот пучок тщательно фокусируется в луч, создающий на экране маленькое пятно и возбуждающий электроны люминофора экрана, что и приводит к излучению света. Этот луч отклоняется под действием электрического или магнитного поля, описывая при этом траектории на экране, а интенсивность луча можно изменять посредством управляющего электрода, меняя тем самым яркость пятна. Часть ЭЛТ, в которой создается сфокусированный электронный луч, называется электронным прожектором. Хотя электронный прожектор – основная часть ЭЛТ, она из-за своей сложности будет рассмотрена после других.

Системы отклонения луча.

На выходе электронного прожектора получается узкий электронный луч, который на своем пути к экрану может отклоняться электрическим или магнитным полем. Электрические поля обычно используются в ЭЛТ с экраном малого размера, в частности, такого типа, как в осциллографах. Магнитные поля требуются для отклонения луча в телевизионных ЭЛТ с большими экранами.

В системах отклонения электрическим полем вектор поля ориентирован перпендикулярно начальной траектории луча (которую обычно обозначают направлением z ). Отклонение осуществляется приложением разности потенциалов к паре отклоняющих пластин, как показано на рис. 7. Обычно отклоняющие пластины делают отклонение в горизонтальном направлении (направление x ) пропорциональным времени. Это достигается приложением к отклоняющим пластинам напряжения, которое равномерно возрастает, пока луч перемещается поперек экрана. Затем это напряжение быстро падает до своего исходного уровня и снова начинает равномерно возрастать. Сигнал, который требует исследования (обычно периодическое колебание), подают на пластины, отклоняющие в вертикальном направлении (y ). В результате, если продолжительность однократной горизонтальной развертки равна периоду или соответствует частоте повторения сигнала y , на экране будет непрерывно воспроизводиться один период волнового процесса. В тех случаях, когда требуется большое отклонение, использование электрического поля для отклонения луча становится неэффективным.

Чтобы луч создавал на экране достаточно яркое пятно, а отклоняющий потенциал не достигал величины напряжения пробоя между отклоняющими пластинами, электроны должны получать большое ускорение. Более того, ЭЛТ не должна быть слишком длинной, чтобы прибор, в котором ее предполагается использовать, не стал неприемлемо громоздким. Наконец, ограничивается и длина отклоняющих пластин. При использовании магнитных полей для отклонения луча на большие углы ЭЛТ получается короткой (рис. 8).

Люминесцентный экран.

Люминесцентный экран формируется путем нанесения тонкого слоя люминофора на внутреннюю поверхность торцевой стенки конической части ЭЛТ. Кинетическая энергия электронов, бомбардирующих экран, превращается в видимый свет.

Электронный прожектор.

Электронный прожектор размещается в узкой горловине колбы ЭЛТ. Одна из многих возможных конструкций электронного прожектора схематически изображена на рис. 9,а . Катод и ряд близко расположенных друг к другу цилиндрических электродов выровнены вдоль их общей оси. На рис. 9,б с увеличением показана область фокусировки луча (т.е. «линза» электронного прожектора), в которой действует неоднородное, но осесимметричное электрическое поле. Векторы электрического поля везде перпендикулярны эквипотенциальным поверхностям и направлены на рисунке влево, так как второй анод находится под более высоким потенциалом, чем первый. При этом электроны формируются в сходящийся пучок, который благодаря надлежащей подстройке формы электродов и их относительных потенциалов точно фокусируется при достижении поверхности экрана. В некоторых случаях фокусировка осуществляется посредством магнитного поля, направленного параллельно оси ЭЛТ. На рис. 9,в поясняется принцип такой фокусировки.

Электрический потенциал, который определяет максимальную скорость электронов на выходе из электронного прожектора, лежит в пределах от нескольких сотен до 10 000 В. В эксплуатации последний ускоряющий электрод (второй анод) обычно заземляется. В электродах имеются диафрагмы с круглыми отверстиями, которые отсекают периферийные электроны от пучка, предотвращая тем самым размывание пятна. Кроме того, они улавливают электроны вторичной эмиссии, возвращающиеся от различных поверхностей внутренних компонентов ЭЛТ.

Фотоэлектронные приборы.

Фотоэлектронный электровакуумный прибор (фотоэлемент) – это электронная лампа, имеющая катод, который эмиттирует электроны, когда на него попадает видимый свет или инфракрасное либо ультрафиолетовое излучение. Изменения интенсивности излучения вызывают соответствующие изменения электронного потока в лампе, а следовательно, и тока во внешней цепи.

В научных исследованиях и технике фотоэлектронные приборы используют для измерений освещенности. Они находят применение также в устройствах управления уличным освещением, для уравнивания цветов в телевидении и согласования красок в полиграфии, для подсчета объектов на производстве. Фотоэлектронные приборы используются для считывания звука при демонстрации кинофильмов. Звук записывается на пленке в виде непрерывной дорожки переменной плотности, которая модулирует световой луч, направляемый на фотоэлектронный прибор. Выходной сигнал этого прибора получается пропорциональным плотности звуковой дорожки, записанной на пленке.

На рис. 10,а показаны вольт-амперные характеристики типичного электровакуумного фотоэлемента, а на рис. 10,б – относительные спектральные характеристики типичного фотоэлектронного прибора и глаза человека при постоянной световой интенсивности и изменяющейся длине волны излучения. Абсолютные значения амплитуд спектральных характеристик зависят от выбора материала чувствительной поверхности фотокатода.

В некоторых случаях внутрь прибора вводят газ, чтобы повысить его токовую чувствительность. Однако такая чувствительность становится сильно зависящей от потенциала анода, тогда как в вакуумном фотоэлементе выходной сигнал остается неизменным в широком диапазоне значений анодных потенциалов (рис. 11).

Фотоумножитель.

Действие фотоэлектронного умножителя основано на использовании вторичных электронов, которые освобождаются, когда электрон, обладающий высокой скоростью, ударяется о поверхность металла. Прибор работает следующим образом. Электроны, эмиттируемые обычным фотокатодом, притягиваются электрическим полем динода – электрода, потенциал которого несколько выше потенциала катода. Когда электрон ударяется о динод, из него вылетает несколько вторичных электронов. Они ускоряются в направлении второго динода, который находится под более высоким потенциалом, чем первый, и в результате соударения образуется еще большее число вторичных электронов. После нескольких таких ступеней каскадного «размножения» электронов процесс достигает, наконец, анода, собирающего электроны. Сильно увеличенное число электронов, собранных анодом, создает намного больший ток по сравнению с током фотокатода. Если каждый электрон, ударяющийся о динод, выбивает n вторичных электронов, то при числе динодов, равном k , коэффициент усиления тока будет nk . Положение динодов тщательно рассчитывается, с тем чтобы большинство электронов, вылетев с одного динода, попадало на другой и т.д. На рис. 12,а показано, как этот процесс реализуется в сравнительно ограниченном объеме электронной лампы. На рис. 12,б представлена схема подключения типичного фотоэлектронного умножителя. Резисторы всех динодов обычно имеют одинаковое сопротивление. На рис. 12,в приведена токовая характеристика фотоумножителя. В данном случае разность потенциалов между соседними динодами равна 100 В, а полученный коэффициент усиления тока составляет 10 6 .

Газоразрядные лампы.

Газоразрядная лампа – это электронная лампа, содержащая достаточно газа, чтобы существенным образом влиять на ее характеристики. Давление этого газа ниже атмосферного. Обычно для наполнения газоразрядных ламп используют инертные газы (неон, аргон и др.) или пары ртути. Характеристики лампы определяются как свойствами используемого газа, так и его давлением внутри лампы.

Соударения и ионизация.

Присутствие молекул газа в электронной лампе может быть причиной двух эффектов. Соударения с молекулами могут вызвать торможение потока электронов в лампе (такие соударения способны приводить к нарастанию пространственного заряда с образованием облака электронов вокруг катода, что вызывает уменьшение тока), а если электроны ускоряются достаточно большой разностью потенциалов, они могут выбивать электроны из молекул газа, оставляя после себя положительно заряженные ионы. Этот процесс называется ионизацией. Если ускоряющий потенциал в лампе еще более высокий, то первичный электрон и электрон, высвобожденный из молекулы в процессе ионизации, могут ускориться до такой большой скорости, что вызовут дальнейшую ионизацию. Такой процесс приводит к разряду – распространению ионизации в пространстве между анодом и катодом лампы. Образование большого числа положительных ионов и освободившихся при ионизации электронов увеличивает ток, текущий через лампу, и сопротивление лампы во время разряда становится очень малым.

Газоразрядные диоды и газонаполненные лампы.

Газоразрядный диод (газотрон) – это диод, в котором присутствие газа создает высокую проводимость в прямом направлении. Электроны, эмиттируемые катодом, ускоряются к аноду, и в результате возникает разряд. Разряд продолжается до тех пор, пока потенциал анода не станет ниже некоторого потенциала отсечки. Но как только анод становится отрицательным, нехватка электронов уже не в состоянии снова инициировать разряд. Если, однако, потенциал анода понижается до большой отрицательной величины (например, более -100 В), то разряд запускается электронами, эмиттируемыми анодом. Другими словами, анод легче эмиттирует электроны, когда его потенциал не нулевой, а отрицательный. Электроны могут высвобождаться в результате термоэмиссии даже при комнатной температуре из-за их теплового движения. Они могут также появляться вследствие фотоэлектрических процессов, вызываемых бомбардировкой фотонами. В любом случае эмиттируемые электроны будут вызывать в лампе ионизацию с последующим разрядом. Поэтому большие отрицательные напряжения на аноды газоразрядных диодов обычно не подают. Тем не менее такие диоды находят применение в низковольтных схемах выпрямления, в частности, в устройствах для зарядки батарей, где требуется большой ток в прямом направлении.

Неоновая лампа представляет собой газоразрядный диод с двумя одинаковыми электродами без подогревателей. На рис. 13 показана вольт-амперная характеристика такой лампы. Легко видеть, что падение напряжения на лампе остается почти без изменения после того, как лампа «зажглась» подачей на нее напряжения, немного превышающего стартовое. Такая характеристика газоразрядных ламп, работающих в области самоподдерживающегося тлеющего разряда, делает их полезными приборами для поддержания неизменного напряжения в схеме с меняющимся током нагрузки. Обычно для подобных стабилизаторов напряжения (стабилитронов) используют специально разработанные лампы, но годится и простая неоновая лампа. Подсоединять лампы к источнику напряжения нужно через последовательный резистор, чтобы предотвратить слишком большое возрастание тока, которое способно повредить лампу или источник напряжения.

Тиратрон.

Тиратрон – газоразрядный триод, обычно с подогревным катодом. Анод тиратрона, как правило, поддерживается под достаточно высоким потенциалом, чтобы инициировать разряд, когда сетка имеет потенциал катода. (На сетке же поддерживается отрицательный потенциал, чтобы не допустить выхода электронов из прикатодной области и возбуждения разряда.) В нужный момент по сигналу потенциал сетки повышается настолько, чтобы запустить разряд. После возникновения разряда сетка не управляет им до тех пор, пока анодное напряжение не понизится до уровня, при котором разряд погаснет.

Малый положительный импульс, поданный на сетку, позволяет инициировать прохождение большого тока через лампу. Эта управляющая функция и определяет полезность тиратрона. «Стартовый потенциал» сетки – напряжение, при котором инициируется разряд, – зависит от потенциала анода и температуры газа в лампе.

В ионных (газонаполненных) фотоэлементах газ используется, чтобы получить усиление тока вследствие ионизации молекул газа фотоэлектронами. Потенциал анода никогда не доводят до уровня, при котором разряд становится самоподдерживающимся и не нуждающимся в эмиссии фотоэлектронов с катода.

С помощью электровакуумных приборов (ЭВП) можно преобразовывать электрические величины, например ток или напряжение, по форме, значению и частоте, а также энергию излучения и обратно. Можно осуществить сложное преобразование оптического изображения в электрический ток специальной формы или наоборот (в телевизионных и осциллографических трубках). Можно регулировать электрические, световые и другие величины плавно или ступенями с большой или малой скоростью и с малыми затратами энергии на сам процесс регулирования, т. е. без значительного снижения КПД. Малая инерционность, характерная для ЭВП, позволяет применять их в огромном диапазоне частот от нуля до 1012 Гц.

Эти достоинства ЭВП обусловили их использование для выпрямления, усиления, генерации, преобразования частоты, осциллографии электрических и неэлектрических явлений, автоматического управления и регулирования, передачи и приема телевизионных изображений, различных измерений и других процессов.

Электровакуумными приборами называют приборы, в которых рабочее пространство, изолированное газонепроницаемой оболочкой, имеет высокую степень разрежения или заполнено специальной средой (пары или газы) и действие которых основано на использовании электрических явлений в вакууме или газе.

Под вакуумом следует понимать состояние газа, в частности воздуха, при давлениях ниже атмосферного. Применительно к ЭВП понятие «вакуум» определяют исходя из характера движения электронов. Если электроны движутся в пространстве свободно, не сталкиваясь с оставшимися после откачки газа молекулами, то говорят о вакууме. А если электроны сталкиваются с молекулами газа, то следует говорить просто о разреженном газе.

Электровакуумные приборы делятся на электронные, в которых проходит чисто электронный ток в вакууме, и ионные (газоразрядные), для которых характерен электрический разряд в газе (или парах).

В электронных приборах ионизация практически отсутствует, а разрежение газа давлением менее 100 мкПа, характерным для высокого вакуума.

В ионных приборах давление бывает 133*10 -3 Па и выше. При этом значительная часть движущихся электронов сталкивается с молекулами газа и ионизирует их.

Есть еще одна группа проводниковых (безразрядных) ЭВП. Их действие основано на использовании явлений, связанных с электрическим током твердых или жидких проводниках, находящихся в разряженном газе. В этих приборах электрического заряда в газе или в вакууме нет. К ним относятся лампы накаливания, стабилизаторы тока, вакуумные конденсаторы и др.

Особую группу ЭВП составляют электронные лампы, предназначенные для различных преобразований электрических величин. Эти лампы бывают генераторными, усилительными, выпрямительными, частотно-преобразовательными, детекторными, измерительными и др.

В зависимости от рабочих частот электронные лампы подразделяются на низкочастотные , высокочастотные и сверхвысокочастотные.

Во всех ЭВП электронный поток можно регулировать, воздействуя на него электрическим или магнитным полем. Электронные лампы, имеющие два электрода - катод и анод, называются диодами. Диоды для выпрямления переменного тока в источниках питания называют кенотронами. Лампы, имеющие управляющие электроды в виде сеток, бывают с числом электродов от трех до восьми и соответственно называются: триод, тетрод, пентод, гексод, гептод и октод. При этом лампы с двумя и более сетками выделяются в группу многоэлектродных ламп. Если лампа содержит несколько систем электродов с независимыми потоками электронов, то ее называют комбинированной (двойной, диод, двойной триод, триод-пентод, двойной диод-пентод и др.).

Основные ионные приборы - это тиратроны, стабилитроны, лампы со знаковой индикацией, ртутные вентили (управляемые и неуправляемые), ионные разрядники и др.

Большую группу составляют электронно-лучевые приборы, к которым относятся кинескопы (приемные телевизионные трубки), передающие телевизионные трубки, осциллографические и запоминающие трубки, электронно-оптические преобразователи изображений, электронно-лучевые переключатели, индикаторные трубки радиолокационных и гидроакустических станций и др.

В группу фотоэлектронных приборов входят электровакуумные фотоэлементы (электронные и ионные) и фотоэлектронные умножители. К электроосветительным приборам следует отнести лампы накаливания, газоразрядные источники света и люминесцентные лампы.

Особое место занимают рентгеновские трубки, счетчики элементарных частиц и другие специальные приборы.

Электровакуумные приборы классифицируются еще и по другим признакам: по типу катода (накаленный или холодный), по материалу и устройству баллона (стеклянный, металлический, керамический, комбинированный), по роду охлаждения (естественное, или лучистое, и принудительное - воздушное, водяное, паровое).

Статические характеристики, важнейшими из которых являются анодно-сеточные и анодные, снимают при одном постоянном параметре.

Анодно-сеточные характеристики отражают зависимость анодного тока от напряжения на сетке при некотором постоянном анодном напряжении, то есть I а =f(U с) при U а =const.

Такие характеристики снимают для нескольких анод­ных напряжений и получают семейство анодно-сеточных характеристик, представленных на рисунке ниже:

1 — анодно сеточные характеристики триода; 2 — анодные характеристики триода.

Триод - это трехэлектродный электровакуумный прибор, один из самых распространенных в электронной технике.

Три его электрода — анод, катод и сетка размещены внутри баллона, из которого откачан воздух. Между като­дом, находящимся обычно в центре баллона, и анодом, ко­торому чаще всего придают цилиндрическую или коробча­тую форму, расположена спиралеобразная управляющая сетка. Условное обозначение триода отражает его принципиальное устройство.

Рассматривая конструкцию триода, нетрудно понять, что, поскольку сечка расположена намного ближе к ка­тоду, чем анод, влияние ее потенциала на ток лампы значительно превосходит влияние потенциала анода. Этим и объясняется основная функции триода: управление боль­шим током в анодной цепи посредством маломощных сигна­лов (потенциалов), подаваемых в сеточную цепь.

а — устройство триода; б — обозначение на схемах; в — схема включения для снятия характеристик

На рисунке выше (в) показан один из вариантов включе­ния триода. Источник питания Е а, резистор R а и участок анод - катод образуют анодную цепь, а источник питания Е с, резистор и участок сетка – катод составляют се­точную цепь. В этой схеме, изменяя положение скользя­щего контакта на резисторе R с, можно устанавливать на сетке то или иное напряжение.

Когда напряжение на сетку не подается (равно нул ю), она практически не оказывает влияния на работу лампы и триод действует, в сущности, так же, как рассмот­ренная ранее двухэлектродная лампа - диод.

Если на сетке отрицательное напряжен и е, то между нею и катодом возникает электрическое поле, которое препятствует движению электронов и огра­ничивает анодный ток. На сетке можно установить такое отрицательное напряжение, что анодный ток вообще пре­кратится, поскольку все электроны будут отталкиваться сеткой обратно к катоду. В этом случае говорят, что лампа заперта, а соответствующее напряжение на сетке называют потенциалом запирания .

Диод - простейшая двухэлектродиая электрон­ная лампа. Два ее электрода - это катод (прямого или косвенного накала) и анод (обычно цилиндрической формы). Основное свойство диодов - односторонняя проводимость, то есть способность пропускать ток только в одном направ­лении.

Схемы включения диодов:

а — с катодом прямого накала; б — с катодом косвенного накала.

Катод подключен к источнику тока Е н (для диодов с катодом прямого накала Е н составляет при­близительно 1-2 В, для диодов с катодом косвенного на­кала 6,3 В), а анодная цепь - к источнику тока Е а (обычно значения Е а находятся в диапазоне 80-300 В, но для мощ­ных ламп достигают нескольких киловольт). Характерно, что у ламп с подогревным катодом цепь накала и анодная цепь полностью разделены, что создает ряд конструктивных достоинств.

Электронная лампа - самый распространенный электро­вакуумный прибор. В стеклянном, металлическом, металлокерамическом или пластмассовом баллоне лампы, из ко­торого откачан воздух, размещены электроды.

В зависимости от назначения и типа лампы их может быть несколько, но в любой лампе имеются два основных электрода:

  • катод — источник электронов;
  • анод — приемник электронов.

Движение электронов в вакууме от одного электрода к другому и обусловливает электрический ток лампы.

Различают катоды прямого и косвенного накала.

Катод прямого накала

Катод прямого накала пред­ставляет собой металлическую нить 1, прикрепленную к держателям 2. Эту нить растягивают пружины 3, которые прикреплены к траверсам, установленным в баллоне лампы. Нить подогревается проходя­щим по ней электрическим током (как правило, постоян­ным).

Электровакуумные приборы (электронные лампы, электрон­но-лучевые трубки, фотоэлектронные умножители, фотоэлементы и др.) наряду с полупроводниковыми составляют основу современной радиоэлектронной техники.

Электровакуумные приборы используют в своей работе направленный поток электронов в вакууме, возникающий и результате физического явления электронной) эмиссии, под которым понимают явление испускания электронов металлом под влиянием тепла, света или иных воздействий.

Сущность электронной эмиссии заключается в следую­щем. Как известно, электроны в металлах способны срав­нительно легко покидать свои атомы. Такие электроны получили название свободных. Их место в атомах занимают другне свободные электроны, которые так же легко могут оставить атомы. Если к проводнику не приложено электри­ческое напряжение, то свободные электроны движутся хаотично, в самых различных направлениях и с разными скоростями. Свободные электроны могут покинуть провод­ник, однако этому препятствуют две причины.

Во-первых, над поверхностью проводников образуется слой отрицательных зарядов, создаваемых теми электро­нами, которые на мгновение покидают проводник и возвращаются снова. Этот слой существует постоянно, так как и имей вернувшимся в проводник электронам над его поверхностью появляются новые и т. д. Но раз какое-то количество электронов находится вне проводника, то сам проводник должен иметь избыточные положительные заряды, образованные теми атомами, которые потеряли электроны. Положительные заряды концентрируются у внутрен­ней поверхности проводника. Двойной электрический слой из отрицательных и положительных зарядов создает тор­мозящее поле у поверхности проводника. Значит, для того чтобы покинуть проводник, электрону надо преодолеть это поле, то есть совершить некоторую работу. Следовательно, электрон должен обладать соответствующей энергией.

Электровакуумными приборами (ЭВП) на­зывают устройства, в которых электрический ток со­здается потоком электронов или ионов, движущихся в высоком вакууме или инертной газовой среде. ЭВП под­разделяются на электронно-управляемые лампы (ЭУЛ), электронно-лучевые трубки (ЭЛТ), газоразрядные при­боры (ГРП) и фотоэлектрические (фотоэлектронные) приборы.

В ЭУЛ электрический ток создается за счет движения в высоком вакууме (давление газа составляет всего 1,33 () Па ( мм рт. ст.)) электро­нов от одного электрода к другим. Простейшей ЭУЛ является диод.

Диод. В диоде содержится всего два электрода: катод и анод. Катод является источником свободных электронов. Для выхода электронов из катода им необходимо со­общить дополнительную энергию, называемую работой выхода. Эту энергию электроны получают при нагрева­нии катода электрическим током. Испускание нагретым катодом электронов называют термоэлектронной эмиссией.

Отрицательный пространственный заряд, образован­ный вылетевшими из катода электронами, создает у его поверхности электрическое поле, которое препятствует выходу электронов из катода, образуя на их пути по­тенциальный барьер.

На анод подается положительное относительно катода напряжение, которое уменьшает потенциальный барьер у поверхности катода. Электроны, энергия которых до­статочна для преодоления потенциального барьера, уходят из области пространственного заряда, попадают в ускоряющее электрическое поле анодного напряжения и движутся к аноду, создавая анодный ток. С увеличе­нием анодного напряжения увеличивается и анодный ток диода.

При отрицательном анодном напряжении потенциаль­ный барьер у поверхности катода увеличивается, энергия электронов оказывается недостаточной для его преодо­ления, и ток через диод не протекает. В этом заключается важная особенность диода - его односторонняя электри­ческая проводимость.

На рис. 3.1 показаны условные обозначения диодов и схемы их подключения к источнику анодного напря­жения.

Триод. В отличие от диода триод имеет три электрода: катод, анод и сетку (рис. 3.2, а, б). Сетка располагается

между катодом и анодом в непосредственной близости от катода. Если на сетку подать отрицательное напряже­ние (рис. 3.2, в), то потенциальный барьер у катода увели­чится, а анодный ток уменьшится. При некотором отри­цательном напряжении сетки, называемом напряжением запирания U CK .з an , анодный ток уменьшится до нуля. Если же на сетку подать положительное напряжение (рис. 3.2, г), то образованное им электрическое поле между катодом и сеткой приведет к уменьшению потенциального барьера и увеличению анодного тока.

Ввиду того, что сетка расположена к катоду ближе, чем анод, поданное на нее напряжение влияет на потен­циальный барьер и анодный ток триода значительно силь­нее, чем такое же по значению анодное напряжение. Поэтому в триоде управление анодным током осущест­вляют изменением сеточного напряжения, а не анодного.

Основными характеристиками триода являются се­мейства статических анодно-сеточных (передаточных) характеристик , снятых при различных анодных напряжениях U a к (рис. 3.3, а), и анодных (выходных) характеристик I а = f(U ак), снятых при различных напря­жениях сетки (рис. 3.3, б).

Недостатками триода являются большая проходная емкость (емкость между сеткой и анодом) и малый статический коэффициент усиления. Эти недостатки устра­няются введением в ЭУЛ второй сетки.

Тетрод. Это четырехэлектродная электронно-управляе­мая лампа, содержащая катод, анод и две сетки (рис. 3.4, а). Первая сетка, расположенная вблизи катода, используется, как и в триоде, для управления анодным током и называется управляющей. Вторая сетка, рас­полагаемая между первой сеткой и анодом, является своеобразным экраном между этими электродами. В ре­зультате экранирующего действия второй сетки значи­тельно уменьшается проходная емкость лампы и влияние анодного напряжения на

Потенциальный барьер у поверхности катода. Поэтому для создания направленного движения электронов от катода к аноду на вторую сетку, называемую экранирующей, подают положительное напряжение U c 2 k , которое равно или несколько меньше, чем анодное. При этом часть электронов попадает на экранирующую сетку и создает ток I с2 этой сетки.

Электроны, попадающие на анод, выбивают из него вторичные электроны. При (а такие случаи имеют место при работе тетрода) вторичные электроны притягиваются экранирующей сеткой, что приводит к уве­личению тока экранирующей сетки и уменьшению анод­ного тока. Это явление называют динатронным эффектом. Для устранения динатронного эфекта, огра­ничивающего рабочую область ЭУЛ, между анодом и экранирующей сеткой создают потенциальный барьер для вторичных электронов. Такой барьер образуется при увеличении плотности электронного потока за счет его фокусировки в лучевых тетродах (рис. 3.4, б) или при введении между экранирующей сеткой и анодом третьей сетки, имеющей, как правило, нулевой потенциал.

Пентод. Пятиэлектродную ЭУЛ называют пентодом (рис. 3.4, я). Нулевой потенциал третьей сетки, которая называется антидинатронной пли защитной, обеспечи­вается за счет электрического соединения ее с катодом.

Основными характеристиками тетродов и пентодов являются семейства статических анодных (выходных) при и сеточно-анодных при характеристик, которые снимаются при постоянном напряжении U c 2к и строятся на одном графике (рис. 3.5).

Параметрами, характеризующими усилительные свой­ства ЭУЛ, яляются:

крутизна анодно-сеточной характеристики

внутреннее (дифференциальное) сопротивление

статический коэффициент усиления

Параметры S, и , называемые дифференциальными, связаны между собой соотношением .

ЭЛЕКТРОННО-ЛУЧЕВЫЕ ТРУБКИ

Электронно-лучевыми трубками (ЭЛТ) на­зывают электронные электровакуумные приборы, в кото­рых используется сконцентрированный в виде луча поток электронов. Эти приборы имеют форму трубки, вытя­нутой в направлении движения луча. Основными элемен­тами ЭЛТ являются стеклянный баллон, или колба, элект­ронный прожектор, отклоняющая система и экран (рис. 3.6).

Баллон 7 служит для поддержания в ЭЛТ необходи­мого вакуума и защиты электродов от механических и

климатических воздействий. Часть внутренней поверх­ности баллона покрывают графитовой пленкой 8, назы­ваемой аквадагом. На аквадаг подают положительное относительно катода напряжение.

Электронный прожектор предназначен для создания сфокусированного электронного потока (луча) с требуе­мой плотностью тока. Он состоит из термоэлектронного катода 2, внутри которого находится подогреватель 1, управляющего электрода 3, называемого модулятором, первого 4 и второго 5 анодов. Модулятор и аноды выпол­нены в виде полых цилиндров, соосных с цилиндрическим катодом.

Модулятор подключается к источнику отрицательного напряжения, регулируемого в пределах от нуля до не­скольких десятков вольт. На аноды подаются положитель­ные напряжения: несколько сотен вольт на первый и не­сколько киловольт - на второй.

Между модулятором и первым анодом образуется неоднородное электрическое поле, которое фокусирует все электроны, вылетевшие из катода и прошедшие через отверстие модулятора, в некоторой точке на оси ЭЛТ в полости первого анода. Такое электрическое поле на­зывают электростатической линзой.

Между первым и вторым анодами образуется вторая электростатическая линза. В отличие от первой, коротко­фокусной, она является длиннофокусной: ее фокус распо­лагается на оси ЭЛТ в плоскости экрана 9.

Изменение напряжения модулятора приводит к изме­нению числа электронов, способных преодолеть потен­циальный барьер у катода и попадающих в ускоряющее электрическое поле первого анода. Следовательно, на­пряжение модулятора определяет плотность электронного луча и яркость светящегося пятна на экране ЭЛТ. Фокусировка луча на экране ЭЛТ достигается измене­нием неоднородного электрического поля второй электро­статической линзы путем изменения напряжения первого анода.

Отклоняющая система служит для направления сфо­кусированного электронного луча в любую точку экрана. Это достигается воздействием на электронный луч по­перечного электрического или магнитного поля.

При отклонении электронного луча электрическим полем (электростатическое отклонение) отклоняющие на­пряжения подводятся к двум расположенным взаимно перпендикулярно парам параллельных пластин 6. Элект­ронный луч, проходя между пластинами, отклоняется в сторону пластины с большим потенциалом. Пластины, электрическое поле между которыми отклоняет электрон­ный луч в горизонтальном направлении, называют гори­зонтально-отклоняющими или X-пластинами, а в верти­кальном - вертикально-отклоняющими или Y-пластинами.

Основным параметром электростатической отклоняю­щей системы является чувствительность к отклонению S, определяемая как отношение отклонения светящегося пятна на экране ЭЛТ к отклоняющему напряжению. Для современных ЭЛТ S Э = 0,1 ...3 мм/В.

Наряду с электростатическим применяется и магнит­ное отклонение электронного луча. Отклоняющее магнит­ное поле создается током, проходящим через две пары расположенных взаимно перпендикулярно на горловине ЭЛТ катушек.

Экраны 9 электронно-лучевых трубок, используемых для преобразования электрических сигналов в световые, покрыты специальным составом - люминофором, кото­рый светится при попадании на него сфокусированного потока электронов. В качестве люминофоров используются сульфиды цинка и цинка-кадмия, силикат цинка (виллемит), вольфраматы кальция и кадмия. Такие экраны называются люминесцентными.

На свечение люминофора затрачивается лишь часть энергии электронного луча. Остальная энергия луча пере­дается электронам экрана и вызывает вторичную элект­ронную эмиссию с поверхности экрана. Вторичные элект­роны притягиваются аквадагом, который обычно электри­чески соединяется со вторым анодом.

Экраны ЭЛТ, применяемых для получения цветного изображения, содержат зерна люминофоров с синим, красным и зеленым свечениями - триады, расположенные в определенном порядке. В горловине трубки находятся три автономных электронных прожектора. Они располо­жены таким образом, что их электронные лучи пересе­каются на некотором расстоянии от экрана. В плоскости пересечения лучей устанавливается теневая маска, в ко­торой имеется большое количество отверстий. После про­хождения через отверстия в маске каждый из электрон­ных лучей попадает на свой элемент триады (рис. 3.7).

Вследствие смешивания трех цветов различной яркости получается свечение требуемого цвета.

Кроме люминесцентных, бывают диэлектрические экраны. Электронный луч, перемещаясь по такому экрану, создает на его участках различные заряды, т. е. своеоб­разный потенциальный рельеф, который может сохра­няться длительное время. Диэлектрические экраны при­меняются в запоминающих ЭЛТ, получивших название потенциалоскопы.

ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ

Принцип действия газоразрядных приборов (ГРП) основан на электрических явлениях, происходящих в га­зовой среде.

Баллоны ГРП наполняются инертными газами (нео­ном, аргоном, гелием и др.), их смесями, водородом или парами ртути. В обычных условиях большинство атомов и молекул газа являются электрически нейтральными и газ является хорошим диэлектриком. Повышение темпе­ратуры, воздействие сильных электрических полей или частиц с высокими энергиями вызывает ионизацию газа. Ионизация газа, возникающая при соударении быстролетящих электронов с нейтральными атомами газа, называется ударной. Она сопровождается появле­нием свободных электронов и положительных ионов, что приводит к значительному увеличению электропровод­ности газа. Сильно ионизированный газ называют элект­ронно-ионной плазмой или просто плазмой.

Наряду с процессом ионизации газа существует и обратный процесс, называемый рекомбинацией. Так как энергия электрона и положительного иона в сумме больше, чем энергия нейтрального атома, то при рекомби­нации происходит выделение части энергии, которое со­провождается свечением газа.

Процесс прохождения электрического тока через газ называется электрическим разрядом в газе. Вольт-ампер­ная характеристика газоразрядного промежутка приве­дена на рис. 3.8.

При напряжении U 3 , называемом напряжением зажи­гания, ионизация газа приобретает лавинообразный ха­рактер. Сопротивление газоразрядного промежутка анод - катод резко уменьшается, и в ГРП возникает тлеющий разряд (участок CD). Напряжение горения U r , поддерживающее тлеющий разряд, несколько меньше, чем напряжение зажигания. При тлеющем разряде по­ложительные ионы движутся к катоду и, ударяясь о его поверхность, увеличивают число вылетающих из него электронов за счет нагревания и вторич-

ной электронной эмиссии. Поскольку внешний ионизатор при этом не тре­буется, тлеющий разряд называется самостоятельным в отличие от разряда на участке АВ, который требует для своего появления внешнего ионизатора (космического з­лучения, термоэлектронной эмиссии и т. д.) и называется несамостоятельным. При значи­тельном увеличении тока в ГРП возникает дуговой разряд (уча­сток EF). Если дуговой разряд поддерживается термоэлект­ронной эмиссией катода за счет его нагрева ударяющимися о поверхность положительными ионами, разряд называют само­стоятельным. Если же термоэлектронная эмиссия катода создается его нагревом от внешнего источника напряжения, то дуговой разряд на­зывают несамостоятельным.

Тлеющий разряд, сопровождающийся свечением газа, используется в неоновых лампах, газоразрядных знако­вых и линейных индикаторах, стабилитронах и некоторых других ГРП.

Газоразрядные индикаторы. Знаковые газоразрядные индикаторы состоят из газонаполненного баллона, десяти катодов н одного общего анода. Катоды имеют форму цифр, букв или других знаков. К аноду и одному из като­дов через ограничительный резистор подается напряже­ние. Между этими электродами возникает тлеющий раз­ряд, который имеет форму катода. Коммутируя различ­ные катоды, можно высвечивать различные знаки. Более универсальными являются сегментные знаковые индика­торы. Так, сегментный индикатор тлеющего разряда ИН-23, состоящий из 13 сегментов, позволяет при соот­ветствующей коммутации катодов-сегментов высветить любую цифру от 0 до 9, букву русского или латинского алфавита.

Линейные газоразрядные индикаторы (ЛГИ) отобра­жают информацию о напряжении или токе в цепи в виде светящихся точек или линий. Положение точки и длина линии пропорциональны напряжению или току в цепи. Электродная система ЛГИ имеет удлиненную цилиндри­ческую форму.

Газоразрядный стабилитрон. Стабилитрон (рис. 3.9, а) имеет два электрода - катод 1, выполненный в виде полого цилиндра, и анод 3 в виде тонкого стержня, рас­положенного по осп катода. Для уменьшения напряжения зажигания с внутренней стороны катода привари­вается небольшой штырек 2, называемый поджигающим электродом

Работа стабилитрона тлеющего разряда основана на поддержании на его электродах почти постоянного напря­жения горения при изменении протекающего через стаби­литрон тока в значительных пределах (участок CD на рис. 3.8).

Стабилитроны применяются для стабилизации напря­жения в цепях постоянного тока.

Тиратрон. Более сложным ГРП является тиратрон. Он содержит катод, анод и один или несколько управ­ляющих электродов, называемых сетками. Тиратрон мо­жет находиться в двух устойчивых состояниях: непрово­дящем и проводящем. На рис. 3.9, б показано устройство тиратрона с холодным катодом типа МТХ-90. Тиратрон состоит из цилиндрического катода 1, стержневого метал­лического анода 2 и металлической сетки 3, выполненной в виде шайбы. При подаче на сетку небольшого положи­тельного относительно катода напряжения между сеткой и катодом возникает вспомогательный «тихий» разряд. При подаче на анод положительного напряжения разряд переносится на анод. Чем больше ток вспомогательного разряда в цепи сетки, тем меньше напряжение зажигания тиратрона. После возникновения разряда между катодом и анодом изменение напряжения сетки не влияет на силу тока тиратрона, и прекратить ток через тиратрон можно уменьшением анодного напряжения до значения, меньшего напряжения горения.

Тиратроны тлеющего разряда потребляют очень малую энергию, работают в большом интервале температур, не чувствительны к кратковременным перегрузкам, готовы к мгновенному действию. Благодаря этим качествам они применяются в импульсных устройствах, генераторах, не­которых узлах счетно-решающих устройств, в релейной аппаратуре, устройствах индикации и др.

ФОТОЭЛЕКТРИЧЕСКИЕ ПРИБОРЫ

К электровакуумным и газоразрядным фотоэлектри­ческим приборам относятся фотоэлементы и фотоумно­жители, принцип работы которых основан на использо­вании внешнего фотоэффекта.

Фотоэлемент (рис. 3.10) имеет стеклянную колбу 2, в которой создан вакуум (электровакуумный фотоэле

мент) или которая заполнена инертным газом (газоразрядный фотоэлемент) Он состоит из анода и фотокатода Фотокатодом является внутренняя по­верхность колбы 3 (за исключением небольшого участка - окна 1), покры­тая слоем серебра, поверх которого на­несен слой оксида цезия. Анод 4 выпол­нен в виде кольца, чтобы не создавать препятствия световому потоку. Анод и катод снабжены выводами 6, прохо­дящими через пластмассовый держа­тель 5 колбы.

При освещении фотокатода свето­вым потоком из него выбиваются элект­роны. Если на анод подано положитель­ное относительно катода напряжение, выбитые из фотокатода электроны будут притягиваться к аноду, создавая в его цепи фототок I ф. Зависимость фототока от светового потока Ф называется световой ха-

рак­теристикой фотоэлемента. Фототок зависит также от на­пряжения U, приложенного между фотокатодом и анодом. Эту зависимость называют анодной ВАХ. В ней имеется ярко выраженный участок насыщения, на котором фототок мало зависит от анодного напряжения (рис. 3.11, а)

У газоразрядных фотоэлементов увеличение напряжения U вызывает ионизацию газа и рост фототока (рис. 3.11, б).

Вследствие малого значения фототока (до нескольких десятков микроампер у вакуумных фотоэлементов и не­скольких единиц микроампер у газоразрядных фотоэле­ментов) фотоэлементы обычно используются с ламповыми или транзисторными усилителями.

Фотоэлектронным умножителем (ФЭУ) называют ЭВП, в котором ток фотоэлектронной эмиссии усиливается за счет вторичной электронной эмиссии. В стеклянном баллоне ФЭУ (рис 3.12), в котором под­держивается высокий вакуум, кроме фотокатода К и анода А имеются дополнительные электроды, являющиеся эмит­терами вторичных электронов и называемые динодами. Число динодов в ФЭУ может достигать 14. На диноды по­даются положительные напряжения, причем по мере удаления от фотокатода значения напряжений динодов возрастают. Напряжение между соседними динодами составляет около 100 В. При освещении фотокатода с его поверхности вылетают электроны, которые ускоряются электрическим удаления полем первого

динода и попадают на пер­вый динод, выбивая из него вторичные электроны. Число последних в несколько раз превышает число электронов, вылетевших из фотокатода. Под действием электрического поля между первым и вторым динодами электроны, выле­тевшие из первого динода, попадают на второй динод D2, выбивая из него вторичные электроны. Число вторичных электронов, выбитых из динода D2, в несколько раз больше числа попавших на него электронов. Таким об­разом, увеличение числа вторичных электронов происхо­дит на каждом диноде. Следовательно, в ФЭУ происходит многократное усиление фототока катода, что позволяет применять их для измерения очень малых световых по­токов. Выходной ток ФЭУ достигает нескольких десятков миллиампер.

Контрольные вопросы и задания

1. Поясните принцип управления анодным током в ЭУЛ с помощью напряжения управляющей сетки.

2. Назовите основные части ЭЛТ с электростатическим управле­нием лучом и поясните их назначение.

3. Назовите основные тины газоразрядных приборов и области
их применения.

4. Дайте краткую характеристику внешнего фотоэффекта. Каким
образом это явление используется в фотоэлементах и фотоумножителях?


Похожая информация.


Электровакуумным прибором наз. устройство, в кот.рабочее прост-во, изолированное газонепроницаемой оболочкой (баллоном), имеет высокую степень разрежения или заполнено специальной средой (парами или газами) и действие которого основано на электрических явлениях, связанных с движением заряженных частиц в вакууме или газе. В соответствии с характером рабочей среды электровакуумные приборы подразделяются на электронные и ионные (газоразрядные).

В электронном ЭВП эл. ток обусловлен движением только свободных электронов в вакууме (электронные лампы, электронно-лучевые приборы, электровакуумные фотоэлек­тронные приборы и др.)

Принцип действия ионного ЭВП основан на использовании св-в эл. разряда в газе или парах металлов. Эти приборы наз. газоразрядными (ГРП дугового, тлеющего, вы­сокочастотного разрядов и др.)

ЭВП состоит из системы электродов, предназн. для управления физ. процессами внутри баллона, отделяющего внешн. среду от рабочего внутрен. прост.ва прибора.

Во всех типах ЭВП и больш.ГРП имеются: катоды - электроды, испускающие (эмитирующие) электроны, и аноды - электроды, собирающие (коллектирующие) электроны. Для управления потоками заряженных частиц используются управляющие электроды, вы­полненные в виде сеток или профилированных пластин, и специ­альные электромагнитные элементы конструкции (катушки). В приборах отображения информации в наглядной (визуальной) форме (ЭЛТ, индикаторы и другие приборы) широко используются специальные конструктивные элементы - экраны, с помощью которых энергия электронного потока или электрического поля пре­образуется в оптическое излучение (свечение) тела. Конструкции электродов очень разнообразны и определяются назначением приборов и условиями их работы.

Баллоны ЭВП и ГРП изго­тавливаются из стекла, металла, ке­рамики и комбинаций этих матер. Вы­воды от электродов делаются через цоколь, торцевые и боковые поверхности баллонов.

Электро́ннаяла́мпа-ЭВП, работающий за счёт управления интенсивностью потокаэлектронов, движущихся в вакууме или разрежённом газе между электродами.

Электронные лампы, предназн. для освещения (лампы-вспышки, ксеноновые лампы, ртутные и натриевые лампы)

Основные типы электронных вакуумных ламп:

Диоды (легко делаются на большие напряжения, см кенотрон),Триоды,Тетроды,Пентоды,лучевые тетроды и пентоды (как разновидности этих типов),Гексоды,Гептоды,Октоды,Ноноды,комбинированные лампы (фактически включают 2 или более ламп в одном баллоне)

Электронные лампы по кол-ву электродов делятся на:

двухэлектродные (диоды);трехэлектродные (триоды);четырехэлектродные (тетроды);пятиэлектродные (пентоды);и даже семиэлектродные (гептоды, или пентагриды).

ТО ЧЕГО НЕТ В ВОПРОСАХ, НО ЕСТЬ В КОНСПЕКТЕ!

Загрузка...